Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10306736 | Psychoneuroendocrinology | 2013 | 14 Pages |
Abstract
This study was conducted to clarify the role of serotonin (5-hydroxytryptamine, 5-HT) 2C receptor (5-HT2CR) signaling during novelty-induced hypophagia in aged mice. Male C57BL/6J mice [6-week-old (young) and 79-80-week-old (aged) mice] were exposed to a novel environment, and its effects on feeding behavior, stress hormones, and appetite-related factors were examined. Exposure of aged mice to a novel environment suppressed food intake and increased corticosterone secretion. These responses were marked compared with those in young mice. The expression in hypothalamic corticotropin-releasing factor (CRF), pituitary CRF1R and proopiomelanocortin mRNA in aged mice exposed to a novel environment was increased or tended to increase, compared to control mice. 5-HT2CR antagonist, SB242084 or rikkunshito administration attenuated the decrease in food intake and increased stress hormone levels in aged mice exposed to the environmental change. The 5-HT2CR mRNA expression in paraventricular nucleus was significantly enhanced, when aged mice was exposure to the novel environment. Thus, novelty-induced hypophagia in aged mice resulted, at least in part, from up-regulated hypothalamic 5-HT2CR function. In conclusion, 5-HT2CR signaling enhancement and the subsequent activation of the CRF neuron were involved in novelty-induced hypophagia in aged mice, and the 5-HT2CR antagonists offer a promising therapeutic option for depression.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Endocrinology
Authors
Miwa Nahata, Shuichi Muto, Koji Nakagawa, Shunsuke Ohnishi, Chiharu Sadakane, Yayoi Saegusa, Seiichi Iizuka, Tomohisa Hattori, Masahiro Asaka, Hiroshi Takeda,