Article ID Journal Published Year Pages File Type
1035373 Journal of Archaeological Science 2014 11 Pages PDF
Abstract

•We reconstructed the atmospheric metal record from a bog in southern Scotland.•We used PCA to separate contamination caused by humans from natural processes.•There was notable enrichment of lead during the late Iron Age and Roman times.•Northern Pennine Orefield was probably exploited for lead during the Roman period.•Most enrichments of Zn, As, Cu and Hg appear to be related to mining/metallurgy.

There is now a plethora of records of atmospheric metal deposition across Europe based on total concentrations and calculated enrichment factors. However, to place such records into an archaeological context and to identify anthropogenic contamination signals more accurately, it is important to separate the signals derived from anthropogenic activities from those of a natural origin. This study presents a new 3300-year record from a bog in the vicinity of Hadrian's Wall and the Northern Pennine orefield in order to generate a new atmospheric metal deposition record for this archaeologically important part of the British Isles. For this purpose multi element geochemistry was undertaken to apportion the contribution of trace metals (lead, zinc, copper, arsenic and mercury) and sulphur as a result of mining/metallurgy and/or geogenic processes. To extract the different contributions through time we used total concentrations and enrichment factors (EF), and applied principal component analysis (PCA) to the dataset. The PCA extracted 7 components: at least two components are necessary to elucidate the trace metal distribution. Zinc, arsenic and lead are mostly related to atmospheric pollution, while mercury and copper appear to be more closely associated with organic matter. Based on these results four phases of lead contamination have been identified that date to: I, c. 2350–1500 cal BP; II, c. 1050–700 cal BP; III, c. 500–350 cal BP and IV, 250 cal BP–present. Copper enrichment also occurs during the Bronze Age (c. 3150–2800 cal BP). Peaks in other metals do not always correspond with lead and they may have been caused by other land use changes or processes that operate internally within the bog. Although the lead can be attributed to both anthropogenic and geogenic sources, its down profile pattern is in accordance with contamination records elsewhere in Britain and Europe, and the lead enrichment recorded at Raeburn Flow suggests that the Northern Pennine orefield was exploited for metals during the late Iron Age and Roman period.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , , ,