Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10374953 | Colloids and Surfaces B: Biointerfaces | 2005 | 10 Pages |
Abstract
Surface modification of poly(ethylene terephthalate) (PET) film was performed by surface hydrolysis and layer-by-layer (LBL) assembly followed a mechanism of electrostatic adsorption of oppositely charged polymers, exemplified with chitosan and chondroitin sulfate (CS). Hydrolysis of PET in concentrated alkaline solution produced a carboxyl-enriched surface. The changes of weight loss and surface chemistry, morphology and wettability were monitored and verified by UV-vis spectroscopy, atomic force microscopy (AFM) and water contact angle. Assembly of positively charged chitosan and negatively charged CS was then conducted in a LBL manner to create multilayers on the hydrolyzed PET film. The process of layer growth and oscillation of surface wettability were monitored by UV-vis spectroscopy and water contact angle measurement, respectively. In vitro cell culture revealed that the adherence of endothelial cells was significantly enhanced on the biomacromolecules-modified PET film with preserved endothelial cell function, in particular on those assembled with larger number of chitosan/CS layers. However, with regard to cell proliferation and viability properties after cultured for 4 days, minor difference was determined between the modified and the unmodified PET films.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Colloid and Surface Chemistry
Authors
Yunxiao Liu, Tao He, Changyou Gao,