Article ID Journal Published Year Pages File Type
10375058 Colloids and Surfaces B: Biointerfaces 2005 9 Pages PDF
Abstract
The wettability of poly[2-hydroxyethyl methacrylate-co-methacrylic acid] (pHEMA-MAA) soft contact lenses was investigated in the absence and presence of block copolymer surfactants and lysozyme using the sessile drop method. The advancing dynamic contact angles (Θw/a) values are reported for water as a function of sequential wetting and drying cycles. The Θw/a values for the pHEMA-MAA in the absence of surfactant and lysozyme increased from approximately 20° to 100° as the number of cycles increased from two to ten, and they were independent of the pHEMA-MAA bulk water content. The change from the highly hydrophilic to hydrophobic pHEMA-MAA surface could not be reversed using the sequential wetting and drying cycles even under repeated exposures to saline solution. The effect of block copolymer surfactants with different molecular weights (MW) and hydrophilic-lipophilic balance (HLB) values on the pHEMA-MAA wettability were also studied. Low Θw/a values were observed for pHEMA-MAA hydrogels that were treated with T1304 (MW 10500, HLB 14) and T904 (MW 6700, HLB 15). The surface tension data indicated that these surfactants were incompletely desorbed from the pHEMA-MAA and that the rate of desorption was slow in the timescale of the cycling experiments. Comparatively, poor wettability was observed for pHEMA-MAA surfaces presoaked in T304 (MW 1650, HLB 16) and T1107 (MW 15000, HLB 24) as Θw/a values greater than 90° were measured for these surfactants. The surface tension data indicated that the rate of desorption of T304 and T1107 from the pHEMA-MAA was rapid and that they had a low affinity to the pHEMA-MAA. High contact angles were observed for the pHEMA-MAA hydrogels treated with lysozyme and also for the T1107 presoaked pHEMA-MAA that was also treated with lysozyme. Zero wetting angles throughout the sequential cycling were observed for the T1304 pre-treated pHEMA-MAA that had been treated with lysozyme. These results suggested that the adsorbed lysozyme on the pHEMA-MAA hydrogel had no significant influence on its wetting properties when the hydrogel was pre-treated with T1304.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,