Article ID Journal Published Year Pages File Type
10386102 Desalination 2010 7 Pages PDF
Abstract
Present studies deal with the application of supported liquid membrane (SLM) technique for the separation of uranium (VI) from phosphoric acid medium using a binary mixture of 2-ethyl hexyl phosphoric acid-mono-2-ethyl hexyl ester (PC88A) and neutral donor which is a mixture of four tri-alkyl phosphine oxide better known as Cyanex 923 in n-dodecane as a carrier and (NH4)2CO3 as a receiving phase. Various parameters like feed acidity, nature of strippant, carrier concentration, membrane pore size, membrane thickness etc. which affect the transport of U(VI) have been studied in detail. Experiments have also been carried out to see the transport behaviour of different fission products from a diluted High Level Waste (HLW) solution. Stability of the membrane against the leaching of the extractant and stability of the membrane support have also been investigated. We have tried to model the physicochemical transport of U(VI) in SLM as well as establishing the mechanism (Diffusion controlled) of transport. More than 95% uranium (VI) is recovered in 360 min using a binary mixture of 0.60 M PC88A and 0.15 M Cyanex 923 in n-dodecane as carrier and 0.5 M (NH4)2CO3 as stripping phase from the 0.5 M H3PO4 feed. Lower concentration of H3PO4 (0.5 M) and optimum carrier concentration (0.60 M PC88A + 0.15 M Cyanex 923) in the mole ratio of 4:1 is found to be the most suitable condition for maximum transport of uranium (VI). The optimum conditions obtained from this study was also applied to recover uranium from analytical waste in phosphoric acid medium generated in the laboratory.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , ,