Article ID Journal Published Year Pages File Type
10392403 International Communications in Heat and Mass Transfer 2005 11 Pages PDF
Abstract
In this paper we apply the conjugate gradient method to solve the inverse problem of determining a time-dependent boundary heat flux in order to achieve a given temperature distribution at the final time. The derivation of sensitivity and adjoint equations in conjunction with the conjugate gradient algorithm are given in detail. The zeroth-order Tikhonov regularization is introduced to stabilize the inverse solution. Solutions by finite differences are obtained for various heat flux profiles. It is found that the time-dependent heat flux may be predicted only for a non-dimensional time of the order of 0.1 while the control problem can be satisfactorily solved for an arbitrary period of time.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,