Article ID Journal Published Year Pages File Type
10393785 Biomass and Bioenergy 2011 7 Pages PDF
Abstract
A significant amount of logging residues is available for recovery in clear-cut areas. The forest residues' potential has usually been estimated using biomass models. In Norway spruce (Picea abies) dominated stands, a large share of material is left on site especially due to dropping of needles as residues are left on site to dry in small heaps. In this study, we compared the measured dry weight of logging residues at a power plant with the potential biomass estimations made at a stand level. The study was performed in eight Norway spruce dominated stands, three of which were located in eastern Finland (North Karelia region) with the remainder being in Central Finland. The dry weights of branches, needles and stem tops were estimated using biomass models developed for individual trees by Repola et al. [1]. These dry weights were also compared with Swedish biomass models produced by Marklund [2]. The diameter and tree height information of each harvested tree served as input data in these model-based computations. Tree diameter information was obtained straight from the harvester's stem value files, while the height information was obtained from models using the data from the stem value files as input. Inventory data before logging was used as a control material for harvester based estimates to spot possible measurement errors on the harvester measurement data. In addition, inventory data were used to get the crown height information, which was not available in the harvester measurement data. It was found that the average recovery rate was approximately 62% when applying Repola's et al. [1] models and 61% when applying Marklund's [2] models. However, variation between the logging sites was high. According this study, at least a third of the residues remains on the logging site if they are seasoned during the spring and summertime in small heaps.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , ,