Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10395372 | Bioresource Technology | 2011 | 8 Pages |
Abstract
A partial nitrification system was investigated for 471 days under DO varying concentrations for assessing its stability and population dynamics. Within 130 days of operation at feed DO concentration of 1.0 ± 0.1 mg/L, more than 85% of nitrite was accumulated. Efficiency deteriorated when the feed DO concentration was increased to 4.2 ± 0.3 mg/L. Nitrite accumulation could not be re-established on decreasing feed DO to 1.0 ± 0.1 mg/L. Even at DO concentration of <0.05 mg/L, nitrate production was observed; a condition termed as anoxic nitrification. NOB was detected in the biomass even under this condition by Fluorescence in-situ hybridization (FISH) analysis. Through 16S rRNA gene sequencing a major fraction of unknown bacterial sequences closely resembling haloalkalophilic bacteria of marine origin were detected. The study indicated that these bacterial species might play a role in anoxic nitrification and that NOB could survive extreme low DO condition.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Process Chemistry and Technology
Authors
Rima Biswas, Samik Bagchi, Priyanka Bihariya, Arnab Das, Tapas Nandy,