| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 10395440 | Bioresource Technology | 2011 | 6 Pages | 
Abstract
												As a sustainable biofuel feedstock, marine algae have superior aspects to terrestrial biomass such as less energy and water requirement for cultivation, higher CO2 capture capacity, and negligible lignin content. In this study, various marine algae were tested for fermentative hydrogen production (FHP). Among them, Laminaria japonica exhibited the best performance, showing the highest H2 yield of 69.1 mL H2/g CODadded. It was attributed to its high carbohydrate content and main constituents of polysaccharides, laminarin and alginate, which were found to posses higher H2 production potential than agar and carrageenan. To enhance the H2 production from L. japonica, thermal pretreatment was applied at various conditions. At 170 °C and 20 min, H2 yield was maximized to 109.6 mL H2/g CODadded. The experimental results suggested that marine algae, especially L. japonica, could be used for FHP, and future works would be focused on gaining more energy from the H2 fermentation effluent.
											Related Topics
												
													Physical Sciences and Engineering
													Chemical Engineering
													Process Chemistry and Technology
												
											Authors
												Kyung-Won Jung, Dong-Hoon Kim, Hang-Sik Shin, 
											