Article ID Journal Published Year Pages File Type
10396096 Bioresource Technology 2005 10 Pages PDF
Abstract
Increasing demand for fodder and fuelwood and the scarcity of a good quality water in arid areas has resulted in a search for an alternative source of water for biomass production. An experiment utilizing municipal effluent in growing Dalbergia sissoo was conducted. Five treatments included T1, municipal effluent at 1 PET (Potential evapo-transpiration) (without plant); T2, municipal effluent at 1/2 PET; T3, municipal effluent at 1PET; T4, municipal effluent at 2 PET; and T5, canal water at 1 PET. Observations included plant height, collar diameter at one-month intervals and plant mineral composition, mineral uptake and changes in soil properties at 24 months of plant age. Application of municipal effluent produced better growth in D. sissoo seedlings. Concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were greater in seedlings irrigated with municipal effluent than those of the seedlings irrigated by the treatment T5, and positively related with the quantity of irrigation. The concentrations were greatest in foliage compared to the other parts of seedling, with the exception of Cu concentration. Application of municipal effluents resulted in a 2- to 3-fold increase in the concentrations of soil K, Cu, Fe, Mn and Zn, whereas NH4-N and PO4-P availability increased by 8.1- and 4.5-fold, respectively. The increase in soil organic carbon was only observed in treatments T3 and T4. The accumulations of soil NO3-N, Na, Cu, Fe, Mn and Zn were more in lower soil layers but the other soil parameters showed their greatest values in the upper soil layer. Irrigation using municipal effluent did not result in toxicity to the seedlings before the age of 24 months. The results suggest that municipal effluent could be utilized, as an important source of water and nutrients in growing D. sissoo to increase biomass production in the needs of suburban dwellers. However, a preliminary treatment to reduce excess NH4-N and PO4-P will be required before application to the plantation.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, ,