Article ID Journal Published Year Pages File Type
10398766 Automatica 2012 7 Pages PDF
Abstract
An integrated guidance and control (IGC) design approach is proposed based on small-gain theorem for missiles steered by both canard and tail controls. The angle of attack and pitch rate commands, which are aimed at producing desired aerodynamic lift to achieve robust tracking of a maneuvering target, are generated by a guidance law that is designed using input-to-state stability (ISS) theory. An IGC law is developed utilizing generalized small-gain theorem to enforce the commands, and it can be shown that both the line-of-sight (LOS) rate and the tracking error are input-to-state practically stable (ISpS) with respect to target maneuvers and missile model uncertainties. The algorithm is tested using computer simulations against a maneuvering target.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,