Article ID Journal Published Year Pages File Type
10398832 Automatica 2011 10 Pages PDF
Abstract
This paper addresses the design of a sliding mode tracking controller for single-input-single-output (SISO) uncertain plants with relative degree one and unknown control direction, i.e., with unknown sign of the high frequency gain (HFG). We demonstrate that, for a class of linear plants with nonlinear output function, it is possible to achieve global exact tracking using only output-feedback by combining a recently introduced periodic switching function with a well-known control parameterization of Model Reference Control (MRC). Simulation results are presented to illustrate the good tracking performance. One significant advantage of the new scheme is its robustness to time-varying control direction which is here theoretically justified for jump variations of the HFG and successfully tested by simulation in more general conditions. This property makes it adequate for solving extremum-seeking problems. Theoretical justification is presented for a class of systems with nonlinear output function using only output-feedback. An application to the wheel slip control in Antilock Braking Systems (ABSs) illustrates the practical viability of the proposed control scheme.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,