Article ID Journal Published Year Pages File Type
10398855 Automatica 2005 12 Pages PDF
Abstract
The number of states in discrete event systems can increase exponentially with respect to the size of the system. A way to face this state explosion problem consists of relaxing the system model, for example by converting it to a continuous one. In the scope of Petri nets, the firing of a transition in a continuous Petri net system is done in a real amount. Hence, the marking (state) of the net system becomes a vector of non-negative real numbers. The main contribution of the paper lies in the computation of throughput bounds for continuous Petri net systems with a single T-semiflow. For that purpose, a branch and bound algorithm is designed. Moreover, it can be relaxed and converted into a linear programming problem. Some conditions, under which the system always reaches the computed bounds, are extracted. The results related to the computation of the bounds can be directly applied to a larger class of nets called mono T-semiflow reducible.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,