Article ID Journal Published Year Pages File Type
10398859 Automatica 2005 10 Pages PDF
Abstract
This paper deals with a central issue in bifurcations and chaos control applications, i.e., the stabilization of periodic motions in sinusoidally forced nonlinear systems. Specifically, the problem of designing multi-input-multi-output (MIMO) finite-dimensional linear time-invariant controllers maximizing the amplitude of the sinusoidal input for which the corresponding periodic solutions are guaranteed to be stable, is considered. By exploiting linearization techniques and the multi-variable circle criterion, a synthesis algorithm is developed to determine the controller which maximizes a suitable lower bound of the amplitude of the input. The algorithm requires the solution of a sequence of linear matrix inequalities (LMIs) of increasing size. The Brusselator oscillator is employed as a case study to show that the synthesized controllers, though optimizing a lower bound, provide quite satisfactory control performance.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,