Article ID Journal Published Year Pages File Type
10407022 Materials Science in Semiconductor Processing 2013 4 Pages PDF
Abstract
The photoresponse of CuIn1−xGaxSe2 (CIGS) solar cells is improved using a periodically-textured structure as an antireflection layer. The CIGS absorber layers were prepared by one-step electrodeposition from an aqueous solution containing 12 mM CuSO4, 25 mM In2(SO4)3, 28 mM Ga2(SO4)3, and 25 mM SeO2. The electrodeposited CIGS films exhibit the (112)-preferred orientation of the chalcopyrite structures and feature improved film stoichiometry after the selenization process. In addition, the lower bandgap value of 0.97 eV is caused by the discrepancy of the reduction potentials for each constituent, resulting in insufficient Ga content in the deposited films. Using self-assembled silica nanoparticles as the etching mask, periodically-textured structures can be easily formed on an indium tin oxide (ITO)-coated soda lime glass to achieve a low average reflection (<10.5%) in a wide wavelength and incident angle range. With the periodic textured structures suppressing light reflections from the front surface, the photogenerated current in the semi-transparent CIGS solar cells made with transparent conducting electrodes is 1.82 times higher than they otherwise would be.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,