Article ID Journal Published Year Pages File Type
10407086 Materials Science in Semiconductor Processing 2013 7 Pages PDF
Abstract
Rutile phase titania (TiO2) nanorods and anatase nanoparticles were successfully synthesized from a titanyl-oxalato complex solution prepared using titanium (IV) sulfate and oxalic acid by a hydrothermal process. The impact of various hydrothermal conditions on the formation, morphology, phase, and grain size of the TiO2 nanocrystals was investigated using fourier transformation infrared spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and nitrogen adsorption. The photocatalytic activities have been evaluated for the photo-decomposition of phenol under ultraviolet visible illumination. The results revealed that the TiO2 rutile nanorods decorated with anatase nanoparticles (with ~22% anatase) prepared at 160 °C for 72 h exhibit a higher photocatalytic activity than those pure anatase nanoparticles. This behavior was closely related to the better charge carrier separation in the cases of rutile-anatase mixtures. In addition, the possible growth mechanism and phase development of the rutile nanorods and anatase nanoparticles were illustrated.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,