Article ID Journal Published Year Pages File Type
10407351 Measurement 2013 13 Pages PDF
Abstract
As a dominant machine learning method, the support vector machine is known to have good generalization capability in its application of the multiclass machine-fault classification utility. In this paper, an application of the SVM in multiclass gear-fault diagnosis has been studied when the gear vibration data in frequency domain averaged over a large number of samples is used. It is established that the SVM classifier has excellent multiclass classification accuracy when the training data and testing data are at identical angular speeds. However, this method relies on the availability of both the training and testing data at that particular angular speed of the gear operation. But the training data may not always be available at all angular speeds of the gear. Hence, two novel techniques, namely the interpolation and the extrapolation methods, have been proposed; these techniques that help the SVM classifier perform multiclass gear fault diagnosis with noticeable accuracy, even in the absence of the training data at the testing angular speed. This method is based on interpolating and extrapolating the training data at angular speeds near the speeds of the test data. In this study effects of choice over different kernels and parameters of SVM on its overall classification accuracy has been studied and optimum values for these are suggested. Finally, the effect on length of training data and data density on the SVM accuracy is also presented.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,