Article ID Journal Published Year Pages File Type
10413350 Solid-State Electronics 2005 7 Pages PDF
Abstract
In this paper, we present simulations of some of the most relevant transport properties of the inversion layer of ultra-thin film SOI devices with a self-consistent Monte-Carlo transport code for a confined electron gas. We show that size induced quantization not only decreases the low-field mobility (as experimentally found in [Uchida K, Koga J, Ohba R, Numata T, Takagi S. Experimental eidences of quantum-mechanical effects on low-field mobility, gate-channel capacitance and threshold voltage of ultrathin body SOI MOSFETs, IEEE IEDM Tech Dig 2001;633-6; Esseni D, Mastrapasqua M, Celler GK, Fiegna C, Selmi L, Sangiorgi E. Low field electron and hole mobility of SOI transistors fabricated on ultra-thin silicon films for deep sub-micron technology application. IEEE Trans Electron Dev 2001;48(12):2842-50; Esseni D, Mastrapasqua M, Celler GK, Fiegna C, Selmi L, Sangiorgi E, An experimental study of mobility enhancement in ultra-thin SOI transistors operated in double-gate mode, IEEE Trans Electron Dev 2003;50(3):802-8. [1], [2], [3]]), but also the electron saturation velocity and the carrier heating depend on the subband structure, and thus on the silicon film thickness.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,