Article ID Journal Published Year Pages File Type
10414053 Communications in Nonlinear Science and Numerical Simulation 2014 12 Pages PDF
Abstract
This paper introduces an estimation method based on Least Squares Support Vector Machines (LS-SVMs) for approximating time-varying as well as constant parameters in deterministic parameter-affine delay differential equations (DDEs). The proposed method reduces the parameter estimation problem to an algebraic optimization problem. Thus, as opposed to conventional approaches, it avoids iterative simulation of the given dynamical system and therefore a significant speedup can be achieved in the parameter estimation procedure. The solution obtained by the proposed approach can be further utilized for initialization of the conventional nonconvex optimization methods for parameter estimation of DDEs. Approximate LS-SVM based models for the state and its derivative are first estimated from the observed data. These estimates are then used for estimation of the unknown parameters of the model. Numerical results are presented and discussed for demonstrating the applicability of the proposed method.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,