Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10414061 | Communications in Nonlinear Science and Numerical Simulation | 2014 | 16 Pages |
Abstract
This study presents tribal particle swarm optimization (TPSO) to optimize the parameters of the functional-link-based neurofuzzy inference system (FLNIS) for prediction applications. The proposed TPSO uses particle swarm optimization (PSO) as evolution strategies of the tribes optimization algorithm (TOA) to balance local and global exploration of the search space. The proposed TPSO uses a self-clustering algorithm to divide the particle swarm into multiple tribes, and selects suitable evolution strategies to update each particle. The TPSO also uses a tribal adaptation mechanism to remove and generate particles and reconstruct tribal links. The tribal adaptation mechanism can improve the qualities of the tribe and the tribe adaptation. Finally, the FLNIS model with the proposed TPSO (FLNIS-TPSO) was used in several predictive applications. Experimental results demonstrated that the proposed TPSO method converges quickly and yields a lower RMS error than other current methods.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Cheng-Hung Chen, Yen-Yun Liao,