Article ID Journal Published Year Pages File Type
10414084 Communications in Nonlinear Science and Numerical Simulation 2014 16 Pages PDF
Abstract
Thanks to their simplicity and flexibility, evolutionary algorithms (EAs) have attracted significant attention to tackle complex optimization problems. The underlying idea behind all EAs is the same and they differ only in technical details. In this paper, we propose a novel version of EAs, bird mating optimizer (BMO), for continuous optimization problems which is inspired by mating strategies of bird species during mating season. BMO imitates the behavior of bird species metaphorically to breed broods with superior genes for designing optimum searching techniques. On a large set of unimodal and multimodal benchmark functions, BMO represents a competitive performance to other EAs.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,