Article ID Journal Published Year Pages File Type
10414202 Computers & Fluids 2005 19 Pages PDF
Abstract
The main goal of this paper is to study adaptive mesh techniques, using a posteriori error estimates, for the finite element solution of the Navier-Stokes equations modeling steady and unsteady flows of an incompressible viscous fluid. Among existing operator splitting techniques, the θ-scheme is used for time integration of the Navier-Stokes equations. Then, a posteriori error estimates, based on the solution of a local system for each triangular element, are presented in the framework of the generalized incompressible Stokes problem, followed by its practical application to the case of incompressible Navier-Stokes problem. Hierarchical mesh adaptive techniques are developed in response to the a posteriori error estimation. Numerical simulations of viscous flows associated with selected geometries are performed and discussed to demonstrate the accuracy and efficiency of our methodology.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,