Article ID Journal Published Year Pages File Type
10414496 Applied Acoustics 2005 18 Pages PDF
Abstract
Simple three-dimensional passive and active models of the human basilar membrane were built, solved using the Finite Element Method and tested. In the active model an active mechanism connected with electromotility of outer hair cells was included. In the active model the active mechanism was incorporated in the form of additional, local pressure load. In the passive model the active mechanism was neglected. Hydrodynamic coupling between the cochlear partition and cochlear fluid was excluded in both models. Geometrical and physical parameters of the model were chosen to be adequate to those of humans in the best possible way. However, some of these parameters had to be estimated. The models were tested by calculation of typical curves known from cochlear measurements performed mostly on animals. For the passive model a linear input-output function and very small values of the basilar membrane velocities were obtained. This behaviour is to be expected for the passive model and for the basilar membrane in the poor physiological condition. For the active model the compressed input-output functions, tuning curves, isointensity curves and reasonable BM velocities were obtained. Possible inadequacies, which could explain the differences between numerical results and measurements were described.
Keywords
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,