Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10415593 | Engineering Fracture Mechanics | 2011 | 11 Pages |
Abstract
The analysis of crack growth in magnesium single crystal was performed using molecular dynamics simulation with Embedded Atom Method (EAM) potentials. The twinning process at the crack tip was analyzed. Four specimens with increasing sizes were used to investigate the influences of material length scale on crack growth of magnesium single crystals. Furthermore, the effects of temperature, and the loading strain rate were also verified. The specimens were subjected to uniaxial tension strain up to the total strain level of 0.2 with a constant strain rate. In the simulation of each specimen, the averaged stress strain curve was monitored. The simulation results show that the specimen size, loading strain rate, and temperature strongly influence the peak stress point at which the twin nucleated and subsequently the crack grew. The initial slope of the averaged stress strain curve is independent of the loading strain rate and temperature. Moreover, high temperatures induce increased atomic mobility, and thereby atom reorganization, which, in turn, releases the stress at the crack tip.
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Tian Tang, Sungho Kim, M.F. Horstemeyer, Paul Wang,