Article ID Journal Published Year Pages File Type
10415616 Engineering Fracture Mechanics 2005 19 Pages PDF
Abstract
During crack growth of real materials, the total energy released can be partitioned into elastic and dissipative terms. By analyzing material models with mechanisms for dissipating energy and tracking all energy terms during crack growth, it is proposed that computer simulations of fracture can model crack growth by a total energy balance condition. One approach for developing fracture simulations is illustrated by analysis of elastic-plastic fracture. General equations were derived to predict crack growth and crack stability in terms of global energy release rate and irreversible energy effects. To distinguish plastic fracture from non-linear elastic fracture, it was necessary to imply an extra irreversible energy term. A key component of fracture simulations is to model this extra work. A model used here was to assume that the extra irreversible energy is proportional to the plastic work in a plastic-flow analysis. This idea was used to develop a virtual material based on Dugdale yield zones at the crack tips. A Dugdale virtual material was subjected to computer fracture experiments that showed it has many fracture properties in common with real ductile materials. A Dugdale material can serve as a model material for new simulations with the goal of studying the role of structure in the fracture properties of composites. One sample calculation showed that the toughness of a Dugdale material in an adhesive joint mimics the effect of joint thickness on the toughness of real adhesives. It is expected, however, that better virtual materials will be required before fracture simulations will be a viable approach to studying composite fracture. The approach of this paper is extensible to more advanced plasticity models and therefore to the development of better virtual materials.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,