Article ID Journal Published Year Pages File Type
10416306 Engineering Fracture Mechanics 2005 18 Pages PDF
Abstract
An experimental and numerical study on ductile crack formation in tensile tests was conducted. Five different specimens including flat specimens, smooth round bars, notched bars (two types) and flat-grooved plates were investigated. Von Mises equivalent strain to crack formation, stress triaxiality, and stress and strain ratios at critical locations, were obtained. Accuracy of the Bridgman formulas for stresses in necked round bars, and McClintock's model for flat-grooved plates, were studied. A relationship between the stress triaxiality and equivalent strain to crack formation was determined in a high stress triaxiality range for Al 2024-T351. More importantly, it was found that equivalent strain and stress triaxiality are the two most important factors governing crack formation, while stress and strain ratios cause secondary effects. It appears possible to make a good prediction of crack formation with equivalent strain and stress triaxiality.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,