Article ID Journal Published Year Pages File Type
10419353 Mechanics Research Communications 2005 7 Pages PDF
Abstract
The poroelastic problem associated with a hollow cylinder under cyclic loading is solved. This cylinder models an osteon, basic unit of cortical bone. Both fluid and solid phases are supposed compressible. Solid matrix is modeled as an elastic transverse isotropic material. An explicit close-form solution for the steady state is obtained. Fluid flow distribution as a function of poroelastic properties and cyclic loading is discussed as it could influence bone remodeling. Strain rate of loading is shown to play a significant role in mass flux in the porous material.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,