Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10419554 | Precision Engineering | 2005 | 8 Pages |
Abstract
Simultaneous double-disk grinding (DDG) is a novel and powerful technology for precision-machining mono-crystalline silicon slices (“wafers”). With DDG the extreme degrees of planarity can be achieved, which the fabrication of micro-electronic devices with minimum lateral feature dimensions of 90Â nm and below demands. In DDG, both sides of the wafer are ground simultaneously between two opposite grinding wheels on collinear spindle axes. It is a chuck-less process, in which the workpiece is machined in “free-floating” fashion. Machining kinematics, removal mechanism, and resulting wafer shape differ from those known from (chuck-mounted) single-side grinding or double-sided batch lapping, which are conventionally used in mechanical wafer shaping. This article explains the kinematics of DDG and derives the basic, method-inherent features always observed on DDG-ground wafers from simple kinematic considerations without further model assumptions: global wafer shape, center dip (“navel”), edge thickness roll-off, and symmetries. The expected results are compared with experimental data.
Related Topics
Physical Sciences and Engineering
Engineering
Industrial and Manufacturing Engineering
Authors
Georg J. Pietsch, Michael Kerstan,