Article ID Journal Published Year Pages File Type
10420062 Reliability Engineering & System Safety 2005 9 Pages PDF
Abstract
Measures that improve durability of a structure usually increase its initial cost. Thus, in order to make a decision about a cost-effective solution the life-cycle cost of a structure including cost of structural failure needs to be considered. Due to uncertainties associated with structural properties, loads and environmental conditions the cost of structural failure is a random variable. The paper derives probability distributions of the cost of failure of a single structure and a group of identical structures when single or multiple failures are possible during the service life of a structure. The probability distributions are based on cumulative probabilities of failure of a single structure over its service life. It is assumed that failures occur at discrete points in time, the cost of failure set at the time of decision making remains constant for a particular design solution and the discount rate is a deterministic parameter not changing with time. The probability distributions can be employed to evaluate the expected life-cycle cost or the expected utility, which is then used in decision making. An example, which considers the selection of durability specifications for a reinforced concrete structure built on the coast, illustrates the use of the derived probability distributions.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,