Article ID Journal Published Year Pages File Type
10420079 Reliability Engineering & System Safety 2005 10 Pages PDF
Abstract
This paper proposes a methodology based on Bayesian statistics to assess the validity of reliability computational models when full-scale testing is not possible. Sub-module validation results are used to derive a validation measure for the overall reliability estimate. Bayes networks are used for the propagation and updating of validation information from the sub-modules to the overall model prediction. The methodology includes uncertainty in the experimental measurement, and the posterior and prior distributions of the model output are used to compute a validation metric based on Bayesian hypothesis testing. Validation of a reliability prediction model for an engine blade under high-cycle fatigue is illustrated using the proposed methodology.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,