Article ID Journal Published Year Pages File Type
10425159 Composites Science and Technology 2010 8 Pages PDF
Abstract
This novel research aims to develop, for the first time, microcellular polyethylene fiber-reinforced polyethylene (PE/PE) clay containing nano-composites during a solid-state microcellular foaming process using supercritical nitrogen (scN2) as a foaming agent. Results show that by employing clay nanoparticles in the matrix, expansion ratio of the microcellular processed composites enhance, because of the nucleating effect of nanoparticles. Microcellular nano-homocomposite has an average cell size of 0.5 μm. Trans-crystalline layer of composites with a length of about 3 μm; remain intact during the foaming process but the bulk matrix crystalline structure alters to a more oriented “quasi-fibrillar” structure after foaming. Microcell growth in the amorphous interlamellar regions exerts a tension on the neighboring lamellas which cause some orientation on them. The DSC studies show the emerging of new crystalline sectors with a lower melting point which affirms the creation of a less perfect crystalline morphology due to cell wall movements during cell growth step and subsequent stabilization period of the cells.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,