Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10425888 | Comptes Rendus Mécanique | 2016 | 16 Pages |
Abstract
La décomposition harmonique orthogonalisée des tenseurs symétriques d'ordre quatre (ayant les symétries majeures et mineures, tels que le tenseur d'élasticité) est complétée par une représentation des tenseurs harmoniques d'ordre quatre H à l'aide de deux tenseurs harmoniques (symétriques déviatoriques) d'ordre deux. Une décomposition similaire est obtenue pour les tenseurs non symétriques (ayant uniquement la symétrie mineure, tels que ceux rencontrés en photo-élasticité et en élasto-plasticité), introduisant un tenseur antisymétrique majeur à traces nulles Z. Le tenseur Z est représenté par deux tenseurs d'ordre deux, le premier harmonique et le second antisymétrique. Les représentations des tenseurs d'ordre quatre complètement symétriques (rari-constants), symétriques et antisymétriques majeurs sont des cas particuliers simples de la représentation proposée. Les expressions analytiques de la décomposition correspondante dans le cas monoclinique sont obtenues et appliquées à l'élasticité et à la photo-élasticité monocliniques.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Rodrigue Desmorat, Boris Desmorat,