Article ID Journal Published Year Pages File Type
10426656 Nonlinear Analysis: Real World Applications 2005 21 Pages PDF
Abstract
A reaction pathway for a classical two-species reaction is considered with one reaction that is several orders of magnitudes faster than the other. To sustain the fast reaction, the transport and reaction effects must balance in such a way as to give an internal layer in space. For the steady-state problem, existing singular perturbation analysis rigorously proves the correct scaling of the internal layer. This work reports the results of exploratory numerical simulations that are designed to provide guidance for the analysis to be performed for the transient problem. The full model is comprised of a system of time-dependent reaction-diffusion equations coupled through the non-linear reaction terms with mixed Dirichlet and Neumann boundary conditions. In addition to internal layers in space, the time-dependent problem possesses an initial transient layer in time. To resolve both types of layers as accurately as possible, we design a finite element method with analytic evaluation of all integrals. This avoids all errors associated with the evaluation of the non-linearities and allows us to provide an analytic Jacobian matrix to the implicit time stepping method. The numerical results show that the method resolves the localized sharp gradients accurately and can predict the scaling of the internal layers for the time-dependent problem.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,