Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10426864 | Nonlinear Analysis: Theory, Methods & Applications | 2011 | 11 Pages |
Abstract
This paper is concerned with a double fronts free boundary problem for the heat equation with a localized nonlinear reaction term. The local existence and uniqueness of the solution are given by applying the contraction mapping theorem. Then we present some conditions so that the solution blows up in finite time. Finally, the long-time behavior of the global solution is discussed. We show that the solution is global and fast if the initial data is small and that a global slow solution is possible when the initial data is suitably large.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Peng Zhou, Jie Bao, Zhigui Lin,