Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10428772 | Optik - International Journal for Light and Electron Optics | 2005 | 7 Pages |
Abstract
Microlens arrays and microoptical components in general are integral components in a wide range of high-tech products. The ability to fabricate such elements cheaply and with a high degree of accuracy is vital for the development of the next generation of optics-based technologies. There are currently a wide range of microoptical element fabrication technologies. These techniques all have advantages and disadvantages and no one technique is yet sufficient to meet all possible application criteria. One method that has been examined recently is the ink-jet deposition method. This method applies well-established ink-jet printer technology and is thus one possible candidate for large-scale fabrication of inexpensive components. The lenses fabricated using this method are normally found to have spherical profiles. In this paper, we examine the possibility of modifying the profile of these spherical lenses using an applied electric field (E-field). We note that the resulting aspheric lenses have a wide number of applications. These include beam shaping and power transfer applications including fiber coupling. In this paper we describe initial experiments involving single lenses. The single lenses produced using applied E-Fields differ significantly from lenses produced with no applied E-field.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
F.T. O'Neill, G. Owen, J.T. Sheridan,