Article ID Journal Published Year Pages File Type
10429499 Biosensors and Bioelectronics 2011 5 Pages PDF
Abstract
In this paper, an approach of improving power generation of microbial fuel cells (MFCs) by using a HSO4− doped polyaniline modified carbon cloth anode was reported. The modification of carbon cloth anode was accomplished by electrochemical polymerization of aniline in 5% H2SO4 solution. A dual-chamber MFC reactor with the modified anode achieved a maximum power density of 5.16 W m−3, an internal resistance of 90 Ω, and a start-up time of 4 days, which was respectively 2.66 times higher, 65.5% lower, and 33.3% shorter than the corresponding values of the MFC with unmodified anode. Evidence from X-ray photoelectron spectroscopy and scanning electron microscopy results proved that the formation of biofilm on the anode surface could prevent the HSO4− doped polyaniline to be de-doped, and the results from electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly after inoculation. Charge transfer was facilitated by polyaniline modification. All the results indicated that the polyaniline modification on the anode was an efficient approach of improving the performance of MFCs.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,