Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10429506 | Biosensors and Bioelectronics | 2011 | 7 Pages |
Abstract
A “dual-layer membrane cloaking” (DLMC) method was developed to construct disposable electrochemical immunosensor for direct determination of serum sample. Mouse IgG (MIgG) molecules were firstly immobilized on a substrate. After the formation of a didodecyldimethylammonium bromide (DDAB) membrane on the MIgG modified substrate, an additional bovine serum albumin (BSA) thin layer was formed to build a BSA/DDAB dual-layer membrane (DLM). When alkaline phosphatase conjugated anti-mouse IgG antibodies (anti-MIgG-ALP) in human serum were incubated on the substrate, anti-MIgG-ALP was recognized specifically by the immobilized MIgG while all nonspecifically adsorbed proteins were selectively removed together with BSA/DDAB DLM by 5% Triton X-100 (v/v) before final measurements. The BSA/DDAB DLM was characterized and optimized by surface plasmon resonance (SPR) technique, and further employed in a disposable immunoassay based on an ITO chip. Under optimal conditions, MIgG in human serum was directly detected in the range of 2.0-18.0 ng mLâ1 without dilution or separation. A limit of detection as low as 0.922 ng mLâ1 (6.15 pM) was obtained. The proposed DLMC method can efficiently prevent the penetration of matrix proteins through single cloaking membrane and completely eliminate nonspecific adsorption. It has great potential in providing a versatile way for direct determination of serum sample with ultra-sensitivity.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Zong Dai, Yan Yang, Hai Wu, Xiao-Yong Zou,