Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10429577 | Biosensors and Bioelectronics | 2005 | 7 Pages |
Abstract
The amplification refractory mutation system (ARMS) is routinely used for the identification of specific mutations within genomes. This PCR-based assay, although simple, is performed at a low-throughput scale, usually requiring gel-electrophoresis for the identification of specific mutations. We have applied the ARMS technology to a low-density microarray system to facilitate the needs of the medical clinic; high-throughput capabilities and ease-of-use. Mutations within the cystic fibrosis transmembrane regulator (CFTR) gene (ÎF508, 1717â1G>A, G542X, 621+1G>T, and N1303K) were detected by multiplex-ARMS-PCR, and fragments were post-PCR labeled with Cy5. Amine-modified probes specific for both the wild-type and mutant forms of each mutation site were attached to glass substrates. Following hybridization of the PCR fragments to the attached probes (in a low-density microarray format), confirmation of the presence of specific sequences was achieved using a commercial scanner, as well as a fabricated low-cost fluorescent detector and applicable software. The novel combination of the ARMS and low-density microarray technologies allows for a high-throughput, simple means to rapidly identify multiple known mutations for many genetic diseases including cystic fibrosis.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Shannon Eaker, Matt Johnson, Josh Jenkins, Martin Bauer, Stephen Little,