Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10430112 | Biosensors and Bioelectronics | 2005 | 8 Pages |
Abstract
The amperometric detection of neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) was achieved at a tyrosinase-chitosan composite film-modified glassy carbon (GC) electrode. The optimal conditions for the preparation of the biosensor were established. This bio-composite film was characterized by scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectra, suggesting that chitosan covalently connected to chitosan chains. Electrochemical characterization of the bio-hybrid membrane-covered electrodes were also performed in 0.05 M phosphate buffer solution (pH 6.52) containing neurotransmitters or their derivatives by using cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and amperometry. This simply-prepared protein-polysaccharide hybrid film provides a microenvironment friendly for enzyme loading. The sensor was operated at â0.15 V with a short response time. The current linearly increased with the increasing concentration of DOPAC over the concentration of 6 nM-0.2 mM. The lower detection limit for DOPAC is 3 nM (S/N = 3). The sensitivity of the sensor is 40 μA mMâ1. A physiological level of neurotransmitters and their derivatives including dopamine, l-dopa, adrenaline, noradrenaline and homovanillic acid as well as ascorbic acid, uric acid and acetaminophen do not affect the determination of DOPAC.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Aihua Liu, Itaru Honma, Haoshen Zhou,