Article ID Journal Published Year Pages File Type
10431112 Journal of Biomechanics 2016 6 Pages PDF
Abstract
We investigate the effects of transient expression of wild type (WT) and disease-linked mutations of tau (R406W, P301L, ΔN296) on cytoskeletal organization and cargo transport in COS-7 cells, which are natively tau-free. The introduction of tau proteins (either WT or mutant forms) leads to a dramatic restructuring of the microtubule cytoskeleton, as observed using immunofluorescence microscopy. Yet, this microtubule bundling and aggregation has a modest effect on the speed and travel distance of motor-driven cargo transport, as measured by the motions of fluorescently-labeled lysosomes. This suggests that localized transport events are insensitive to the global structure of the microtubule cytoskeleton. Importantly, we also found no evidence that the disease-linked tau mutants were particularly toxic; in fact we found that expression of mutant and WT tau had similar effects on overall microtubule structure and transport phenotypes.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,