Article ID Journal Published Year Pages File Type
10431368 Journal of Biomechanics 2015 13 Pages PDF
Abstract
In many animals, sperm flagella exhibit primarily planar waveforms. An isolated sperm with a planar flagellar beat in a three-dimensional unbounded fluid domain would remain in a plane. However, because sperm must navigate through complex, three-dimensional confined spaces along with other sperm, forces that bend or move the flagellum out of its current beat plane develop. Here we present an extension of previous models of an elastic sperm flagellar filament whose shape change is driven by the pursuit of a preferred curvature wave. In particular, we extend the energy of the generalized elastica to include a term that penalizes out-of-plane motion. We are now able to study the interaction of free-swimmers in a 3D Stokes flow that do not start out beating in the same plane. We demonstrate the three-dimensional nature of swimming behavior as neighboring sperm swim close to each other and affect each others' trajectories via fluid-structure coupling.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,