Article ID Journal Published Year Pages File Type
10432791 Journal of Biomechanics 2013 7 Pages PDF
Abstract
Thoracic injuries are a major cause of mortality in frontal collisions, especially for elderly and obese people. Car occupant individual characteristics like BMI are known to influence human vulnerability in crashes. In the present study, thoracic mechanical response of volunteers quantified by optical method was linked to individual characteristics. 13 relaxed volunteers of different anthropometries, genders and age were submitted to non-injurious sled tests (4 g, 8 km/h) with a sled buck representing the environment of a front passenger restrained by a 3-point belt. A resulting shoulder belt force was computed using the external and internal shoulder belt loads and considering shoulder belt geometry. The mid sternal deflection was calculated as the distance variation between markers placed at mid-sternum and the 7th vertebra spinous process of the subject. Force-deflection curves were constructed using resulting shoulder belt force and midsternal deflection. Average maximum chest compression was 7.9±2.3% and no significant difference was observed between overweight subjects (BMI≥25 kg/m²) and normal subject (BMI<25 kg/m²). The overweight subjects exhibited significantly greater resultant belt forces than normal subjects (715±132 N vs. 527±111 N, p<0.05), higher effective stiffness (30.9±10.6 N/mm vs. 19.6±8.9 N/mm, p<0.05) and lower dynamic stiffness (42.7±8.71 N/mm vs. 61.7±15.5 N/mm, p<0.05).
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , ,