Article ID Journal Published Year Pages File Type
10433264 Journal of Biomechanics 2011 7 Pages PDF
Abstract
We examined changes in weight-bearing ability in mice after injection with botulinum toxin type A (BTX) to determine whether BTX can be used to isolate the effects of muscle on bone. As ambulation patterns were previously shown to improve within two weeks post-injection, we hypothesized that BTX injection to the posterior hindlimb would not significantly affect the mouse's ability to bear weight in the affected limb one week post-injection. Female BALB/c mice (N=13, 16-17 week old) were injected with either 20 μL of BTX (1 U/100 g) or saline (SAL) in the left posterior hindlimb. Vertical ground reaction forces (GRF), hindlimb muscle cross-sectional area (MCSA), and tibial bone micro-architecture were assessed for 42 d following injection. Peak and average vertical GRF were 11±1% and 23±3% lower, respectively, in the BTX-injected hindlimb within 4 d post-injection and remained lower than the SAL-injected hindlimb 14-21 d post-injection (15±4% and 10±2%, respectively). Time between forelimb and hindlimb peaks was 30-40% greater in the BTX-injected hindlimb than SAL-injected hindlimb 4-14 d post-injection. Peak vertical GRF recovered earlier following BTX injection than MCSA or bone volume fraction. These results indicate that weight-bearing ability recovered despite persistent muscle atrophy, and that weight-bearing alone was insufficient to maintain bone in the absence of muscle activity. We suggest that the absence of high-frequency signals typically associated with fast-twitch muscle activity may be contributing to the ongoing degradation of bone after BTX injection.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,