Article ID Journal Published Year Pages File Type
10435035 Medical Engineering & Physics 2015 5 Pages PDF
Abstract
Flow within a model surgical opening during insufflation with heated carbon dioxide was studied using computational fluid dynamics. A volume of fluid method was used to simulate the mixture of ambient air and carbon dioxide gas. The negative buoyancy of the carbon dioxide caused it to fill the wound and form a protective layer on the internal surfaces for a range of flow rates, temperatures, and angles of patient inclination. It was observed that the flow remained attached to the surface of the model due to the action of the Coanda effect. A flow rate of 10 L/min was sufficient to maintain a warm carbon dioxide barrier for a moderately sized surgical incision for all likely angles of inclination.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, ,