Article ID Journal Published Year Pages File Type
10453933 Acta Psychologica 2005 27 Pages PDF
Abstract
The number of joint motions available in the upper extremity provides for multiple solutions to the coordination of a motor task. Making use of these abundant joint motions provides for task flexibility. Controlling bimanual movements poses another level of complexity because of possible tradeoffs between coordination within a limb and coordination between the limbs. We examined how flexible patterns of joint coordination were used to stabilize the hand's path when drawing a circle independently compared to a bimanual pattern. Across-trial variance of joint motions was partitioned into two components: goal-equivalent variance (GEV), representing variance of joint motions consistent with a stable hand path and non-goal-equivalent variance (NGEV) representing variance of joint motions that led to deviations of the hand's path. GEV was higher than NGEV in both unimanual and bimanual drawing, with one exception. Both GEV and NGEV, related to control of the individual hands' motion, decreased when engaged in the bimanual compared to unimanual drawing. Moreover, NGEV, leading to variability in the vectorial distance between the hands, was higher when the two hands drew circles in a bimanually asymmetric vs. symmetric pattern, consistent with reported differences in the relative phasing of the two hands. Our results suggest that the nervous system controls the individual hands' motions by separate intra-limb synergies during both unimanual and bimanual drawing, and superimposes an additional synergy to achieve stable relative motion of the two hands during bimanual drawing.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, ,