Article ID Journal Published Year Pages File Type
1045591 Quaternary Research 2011 9 Pages PDF
Abstract

The formation of segregated ice is of fundamental importance to a broad range of permafrost and periglacial features and phenomena. Models have been developed to account for the microscopic interactions that drive water migration, and predict key macroscopic characteristics of ice lenses, such as their spacings and thicknesses. For a given set of sediment properties, the temperature difference between the growing and incipient lenses is shown here to depend primarily on the ratio between the effective stress and the temperature deviation from bulk melting at the farthest extent of pore ice. This suggests that observed spacing between ice lenses in frozen soils, or traces of lenses in soils that once contained segregated ice, might be used to constrain the combinations of effective stress and temperature gradient that were present near the time and location at which the lower lens in each pair was initiated. The thickness of each lens has the potential to contain even more information since it depends additionally on the rate of temperature change and the permeability of the sediment at the onset of freezing. However, these complicating factors make it more difficult to interpret thickness data in terms of current or former soil conditions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
,