Article ID Journal Published Year Pages File Type
1045825 Quaternary Research 2011 10 Pages PDF
Abstract
Studying boreal-type peatlands near the edge of their southern limit can provide insight into responses of boreal and sub-arctic peatlands to warmer climates. In this study, we investigated peatland history using multi-proxy records of sediment composition, plant macrofossil, pollen, and diatom analysis from a 14C-dated sediment core at Tannersville Bog in northeastern Pennsylvania, USA. Our results indicate that peat accumulation began with lake infilling of a glacial lake at ~ 9 ka as a rich fen dominated by brown mosses. It changed to a poor fen dominated by Cyperaceae (sedges) and Sphagnum (peat mosses) at ~ 1.4 ka and to a Sphagnum-dominated poor fen at ~ 200 cal yr BP (~ AD 1750). Apparent carbon accumulation rates increased from 13.4 to 101.2 g C m− 2 yr− 1 during the last 8000 yr, with a time-averaged mean of 27.3 g C m− 2 yr− 1. This relatively high accumulation rate, compared to many northern peatlands, was likely caused by high primary production associated with a warmer and wetter temperate climate. This study implies that some northern peatlands can continue to serve as carbon sinks under a warmer and wetter climate, providing a negative feedback to climate warming.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,