Article ID Journal Published Year Pages File Type
10461832 Neuroscience & Biobehavioral Reviews 2005 13 Pages PDF
Abstract
In many species of animals chemical stimuli are an important source of information about the threats and dangers present in the social and non-social world. Olfactory cues play a fundamental role in modulating social recognition and interactions in a wide variety of mammals. Rodents, in particular, utilize chemical signals, to recognize and avoid conspecifics infected with parasites and other pathogens. Animals also respond to, and utilize, predator odor related information to assess and minimize their risk of predation. In this review, we briefly focus on the relations between odors, parasite recognition and avoidance and consider some of the associated hormonal, neural and genomic mechanisms. We describe how both male and female rodents distinguish between infected and uninfected males on the basis of odors, displaying aversive response to, and avoidance of, the urine odors of infected individuals. We further describe how the recognition and avoidance of the odors of infected individuals involves genes for the neuropeptide, oxytocin, (OT), and estrogenic mechanisms. We show that mice with deletions of the oxytocin gene (OT knockout mice (OTKO)) and mice whose genes for estrogen receptor (ER)-α or ER-β [ER knockout mice (ERKO), αERKO and βERKO] have been disrupted are specifically impaired in their recognition, avoidance, and memory of the odors of infected individuals. We contrast this with the recognition and display of aversive responses to predator (cat) odor that are insensitive to these genetic manipulations. These findings reveal some of the mechanisms associated with the olfactory mediated recognition of parasitized individuals and predators.
Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , ,