Article ID Journal Published Year Pages File Type
10481242 Physica A: Statistical Mechanics and its Applications 2005 11 Pages PDF
Abstract
We present an approximate analytical expression for escape rates of time-dependent driven stochastic processes with an absorbing boundary such as the driven leaky integrate-and-fire model for neural spiking. The novel approximation is based on a discrete state Markovian modeling of the full long-time dynamics with time-dependent rates. It is valid in a wide parameter regime beyond the restraining limits of weak driving (linear response) and/or weak noise. The scheme is carefully tested and yields excellent agreement with three different numerical methods based on the Langevin equation, the Fokker-Planck equation and an integral equation.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,