Article ID Journal Published Year Pages File Type
10481872 Physica A: Statistical Mechanics and its Applications 2013 11 Pages PDF
Abstract
In this paper we study the asymptotic critical value of contact processes with random connection weights, sitting on a degree-increasing sequence of r-regular graph Gr. We propose a method to generalize the asymptotics results for λc(Zd) and λc(Td) of classical contact processes as well as of recent work for contact processes on complete graphs with random connection weights. Only the lower bound is rigorously proved; it is conjectured, however, that the lower bound gives the right asymptotic behavior. For comparison purposes we also introduce binary contact path processes with random connection weights, whose asymptotic behavior of the critical value is obtained.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,